If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+6=391
We move all terms to the left:
x^2+6-(391)=0
We add all the numbers together, and all the variables
x^2-385=0
a = 1; b = 0; c = -385;
Δ = b2-4ac
Δ = 02-4·1·(-385)
Δ = 1540
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1540}=\sqrt{4*385}=\sqrt{4}*\sqrt{385}=2\sqrt{385}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{385}}{2*1}=\frac{0-2\sqrt{385}}{2} =-\frac{2\sqrt{385}}{2} =-\sqrt{385} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{385}}{2*1}=\frac{0+2\sqrt{385}}{2} =\frac{2\sqrt{385}}{2} =\sqrt{385} $
| 6−n=n−4 | | 1.8x+12=48. | | 14u=28 | | 1.7y+51=8.5 | | 10-4x=-20-7x | | 18+c=16 | | 0=4+120x-4.9x^2 | | x=3x–2 | | -1/3(a+4)=-5 | | 8x+2=x+14 | | -1/3(a+4=-5 | | 6-2p=+9 | | 8x=x^2+6 | | Y=3.8x-7 | | 7p^2-52p+21=0 | | 6x-23=3x+1+40 | | 5(3x-20)=30x | | 158=45c | | 22=x+27-1.5x | | 9/5z=15 | | 3x=60-7x | | -4=1p-5 | | |y|–5=0 | | 2x+3=9x+6-5x | | d/4+3=8 | | d4+3=8/ | | 35k=73 | | d4+3=8 | | 9p−4=10p−5 | | n-22=33 | | y–19.2=6.9 | | 3x^-29+40=0 |